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Abstract. Soft robots have been extensively studied for their ability
to provide both good performance and safe human-robot interaction. In
this paper, we present and compare the performance of two model-based
control techniques with the common aim to independently and simulta-
neously control position and stiffness of a pneumatic soft robot’s joint.
The dynamic system of a robot arm with flexible joints actuated by a
pneumatic antagonistic pair of actuators, so-called McKibben artificial
muscles, will be regarded, while its dynamic parameters will be consid-
ered imprecise. Simulation results are provided to verify the performance
of the algorithms.

Keywords: Soft robots · Variable stiffness actuator · Pneumatic
actuator · Antagonistic drive · Adaptive control · Model based control

1 Introduction and Related Work

To have a highly efficient assembly process of complex products, the advantages
of both humans and robots need to be used. The worker’s dexterity and robot’s
strength enable the optimized production, which is achieved if they collabo-
rate in the shared environment [1,2]. Concerning the safety of humans in the
vicinity of a typical heavy industrial robot, soft robots have been developed as
an alternative to stiff ones. Soft robots also found their application in the gait
rehabilitation processes and surgical procedures thanks to natural behavior. The
compliance of a robot may be achieved either by reducing the robot’s inertia or
by introducing flexible joints. The works [3] and [4] discuss that robots with vari-
able stiffness actuators (VSA) may have multiple advantages over rigid robots,
as improved robustness to the external disturbance and increased one-to-one
load-to-weight ratio. However, it is a challenging task to accurately track the
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trajectory with the compliant robot due to its highly nonlinear behavior. There-
fore, the compromise between safe interaction and good performance needs to
be accomplished by controlling the stiffness in a way that the robot is stiffer
when accuracy is important and more compliant when interacting within the
anthropic environment.

Variable stiffness actuation can be achieved with the antagonistic setup of
McKibben pneumatically-driven artificial muscles developed back in 1950s [5],
that are characterized by flexibility, lightweight and high force-to-weight ratio.
The design of muscles is inspired by human arm biceps and triceps mechanism.
The simplified nonlinear model of McKibben muscles, obtained in the work of
Chou-Hannaford [6], assumes that the pneumatic artificial muscle is represented
by an elastic spring with nonlinear quadratic characteristic. The nonlinear rela-
tion between tension force and elongation permits McKibben muscles to obtain
variable stiffness.

There are several techniques used for the control of robots with elastic joints.
Accurate modeling of robot dynamics has been mostly a precondition in order to
obtain good performance. In [7,8] the feedback linearization technique is applied
to the control of VSA assuming perfect knowledge of dynamic parameters, which
is de facto unfeasible. The backstepping technique is experimentally validated
on electrically driven VSA [9], however, it is still not immune to the parametric
uncertainty. The pioneering work in the adaptive control of a single flexible joint
position [10] has been followed by the [11] where, besides position, joint stiffness
is controlled in an open loop.

In this paper we compare a recent result of a decoupled nonlinear adaptive
control [12] with the feedback linearization, since both of them control flexible
robot joint’s position and stiffness simultaneously and in the closed-loop. Taking
into account that stiffness is not measurable, the scheme for estimation, as e.g.
the ones proposed in [13] and [14], has to be applied. Soft robot arm actuated
by antagonistically coupled McKibben artificial muscles is used as an example.

The dynamic model of the multi-degree-of-freedom soft robot arm actuated
by McKibben muscles is given in Sect. 2. The control laws are described in Sect. 3,
while in Sect. 4 simulation results of feedback linearization and decoupling adap-
tive control applied to a two-degree-of-freedom (DoF) soft arm actuated by
antagonistic pair of McKibben muscles, are presented and compared.

2 Dynamic Model of a Pneumatic Soft Robot

Each joint in a soft robot arm is antagonistically actuated by two McKibben
pneumatic artificial muscles. The dynamic model of n DoF soft robot arm, where
the indirectly actuated joints position vector is denoted with q ∈ Rn, can be
written as

Bnxn(q)q̈ + Cnxn(q, q̇)q̇ +Gnx1(q) − τnx1 = τext, (1)
where B(q) is the inertial matrix, C(q, q̇) contains Coriolis and centrifugal,
assumed to depend only on the joint position and velocity, G(q) presents gravita-
tional forces and τ is the elastic torque acting on the joint. The external influence
on robot arm denoted as τext is considered to be zero.
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Fig. 1. One DoF McKibben artificial muscle scheme (left) and the experimental setup
that will be used for experiments (right)

Using Chou-Hannaford model of McKibben muscles, elastic (tension) forces
acting on i -th joint are calculated as

Fi,a = Kg
i,aφi,api,a,

Fi,b = Kg
i,bφi,bpi,b,

(2)

where a and b denote the agonist and antagonist muscle, respectively, Kg
i is the

construction parameter assumed to be the same for both antagonistic muscles,
φi,a = (li,a,n − qiR)2 − l2i,a,min, φi,b = (li,b,n + qiR)2 − l2i,b,min, li,a,n and li,b,n
are the nominal, while li,a,min and li,b,min are the minimal muscle extension.
Inflated pressure in the muscle is denoted with Pi and R is the radius of the
pulley. Scheme of antagonistic pair of McKibben muscles is presented in Fig. 1.

Considering previous assumptions on muscles’ equality, elastic torque acting
on i-th joint can be defined as in the following

τi = (Fi,a − Fi,b)R, (3)

or as a generalized vector τn×1 = KΦp, where K = diag(Kg
i R) is a construction-

dependent matrix, actuator matrix Φn×2n is equal to

Φn×2n =




φ1,a −φ1,b . . . 0 0

0 0
. . .

...
...

0 0 . . . φn,a −φn,b



 , (4)

and pressures commanded to muscles are p = (p1,a, p1,b, . . . , pn,a, pn,b)T . The
muscle pressure dynamics is assumed to be linear:

ṗi = −api + bpc,i, (5)

with pc being the commanded pressure, and constants a and b are to be identified
or obtained from datasheet.
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Recalling from [11], stiffness in the i-th joint can be approximated as

Si = −∂τi
∂qi

= −Ki

(
∂φi,a

∂qi
pi,a,−

∂φi,b

∂qi
pi,b

)
, (6)

assuming that ∂Pi
∂qi

is equal to zero. The vector of stiffness in joints is given with
S = −KΦq(q)p, where Φq(q) collects partial derivatives of φi(q) with respect to
q, leading to the stiffness dynamic model

Ṡ = −KΦ̇q(q)p − KΦq(q)ṗ. (7)

Finally, full dynamic model of the soft robot considered in this paper is as
follows

Bnxn(q)q̈ + Cnxn(q, q̇)q̇ +Gnx1(q) − τnx1 = τext,
Ṡ = −KΦ̇q(q)p − KΦq(q)ṗ,

ṗi = −api + bpc,i.
(8)

3 Model-Based Control Techniques

In this section, feedback linearization and decoupled adaptive control techniques
are described, since both of them are formal approaches that enable simultaneous
and decoupled position and stiffness control.

3.1 Feedback Linearization

The groundwork for the feedback linearization method, applied to the soft robots
with variable stiffness actuators in the antagonistic setup has been laid by the
authors of [7,8]. In this subsection very same approach is used for pneumatic
soft robot - the nonlinear system dynamics is transformed by the appropriate
control law into the chain of integrators, so that system becomes linear.

Consider two degree-of-freedom soft robot with the position and pressure
dynamics presented in the state-space form:

ẋ = f(x) + g(x)u
y = h(x) (9)

where outputs are y = (q1, q2, S1, S2)T , inputs areu = (pc,1,a, pc,1,b, pc,2,a, pc,2,b)T ,
and states are x = (q1, q2, q̇1, q̇2, p1,a, p1,b, p2,a, p2,b)T . The first step implies differ-
entiating each output until the input variable appears. If the sum of both outputs
orders is equal to the number of states, then full linearization can be achieved. It
is straightforward to calculate that the direct relation between outputs (position
and stiffness) and commanded pressure is obtained when position is derived three
times and stiffness once:

q(3)1 = L3
fhq,1(x) + E1,1pc,1,a +E1,2pc,1,b + E1,3pc,2,a +E1,4pc,2,b,

q(3)2 = L3
fhq,2(x) + E2,1pc,1,a +E2,2pc,1,b + E2,3pc,2,a +E2,4pc,2,b,

Ṡ1 = LfhS,1(x) + E3,1pc,1,a + E3,2pc,1,b + E3,3pc,2,a + E3,4pc,2,b,
Ṡ2 = LfhS,2(x) + E4,1pc,1,a + E4,2pc,1,b + E4,3pc,2,a + E4,4pc,2,b,

(10)
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where Ei,j for i = 1, · · · , 4, j = 1, · · · , 4 is element of matrix E. As the sum
of orders for both positions and stiffness is equal to the number of states, one
can conclude that all states are fully observable as a result of having no zero
dynamics. It can be concisely written as:

(
q(3)

Ṡ

)
=

(
L3
fhq(x)

LfhS(x)

)
+ E





pc,1,a
pc,1,b
pc,2,a
pc,2,b



 , (11)

with the control input:




pc,1,a
pc,1,b
pc,2,a
pc,2,b



 = E−1



−
(
L(3)
f hq(x)
LfhS(x)

)
+





vq,1
vq,2
vS,1
vS,2







 , (12)

where vq,1, vq,2, vS,1 and vS,2 are newly-introduced inputs, chosen such that for
given desired trajectory of position qd,i and stiffness Sd,i following polynomials
are Hurwitz:

vq,i = q(3)d,i +Kq,2(q̈d,i − q̈i) +Kq,1(q̇d,i − q̇i) +Kq,0(qd,i − qi),
vS,i = Ṡd,i +KS,0(Sd,i − Si).

(13)

3.2 Decoupled Nonlinear Adaptive Control

In this section control technique proposed in [12] will be briefly presented. For
the purpose of designing adaptive control law, it is convenient to express the
robot’s dynamic model (Eq. 1) as a linear combination of parameters, i.e

Bnxn(q)q̈ + Cnxn(q, q̇)q̇ +G(q) = Y (q, q̇, q̈)π, (14)

where Y is a regressor matrix and π is a column vector of uncertain parameters.
The nonlinear adaptive control law from [11] can be adopted in order to

asymptotically track the desired position trajectory qd:

˙̂π = K−1
π Y T (q, q̇, q̇r, q̈r)Tσ,

p = Φ(q)†τ∗ = Φ(q)†(Y T (q, q̇, q̇r, q̈r)Tπ +Kdσ),
(15)

where Kπ denotes the convergence speed of estimated parameters, q̇r = q̇d+Λq̃,
Λ and Kd determine the gains of the proportional-derivative controller, σ = ˙̃q+
Λq̃, and q̃ = qd−q, and Φ(q)† denotes the pseudo-inverse of the actuator matrix.

Then, in order to achieve closed-loop control of stiffness in the decoupled
manner, additional control degree of freedom ν is introduced, laying in the null-
space of the actuator matrix:

p = Φ†τ∗ + Φ⊥ν, (16)
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with Φ⊥ being an orthonormal basis for the null space of Φ obtained via singular
value decomposition. The dynamics of the controller, that ensures asymptotical
tracking of position and stiffness references qd and Sd, is given by following

ν̇ =
(
Φq(q)Φ(q)⊥

)† (
KS(S − Sd) − K−1Ṡd − Φq(q) d

dt

(
Φ(q)†τ∗

)

− Φq(q)Φ(q)†τ∗ − (Φq(q)Φ(q)⊥ + Φ̇(q)⊥) ν
)
,

(17)

˙̂π = K−1
π Y T (q, q̇, q̇r, q̈r)Tσ, (18)

where Ks has terms on its main diagonal that determine the convergence speed
of tracking stiffness error.

4 Simulation Results and Discussion

The proposed control approach for soft-robots has been validated in Mat-
lab/Simulink environment on a two DoF soft robot arm actuated by antagonistic
McKibben artificial muscles. Recalling the well-known dynamic model of robot,
the inertial matrix of the robot arm dynamic model is given by

B =
[
B11 B12

B21 B22

]
, (19)

where B11 = I1 + m1( 12 l1)
2 + I2 + m2l21 + m2( 12 l2)

2 + m2l1l2c2, B12 = I2 +
m2( 12 l2)

2+ 1
2m2l1l2c2, B21 = B12, B22 = 1

2m2l22+I2 with the usual abbreviations
c1 = cos(q1), c2 = cos(q2), and c12 = cos(q1+ q2), respectively, and In being the
identity matrix of dimension n. The Coriolis and centrifugal force matrix C(q, q̇)
and the gravity vector G are

C(q, q̇) =
[
hq̇2 h(q̇1 + q̇2)

−hq̇1 0

] [
q̇1
q̇2

]
, G =

[
( 12m1l1g +m2l1g)c1 + 1

2m2l2gc12
1
2m2l2gc12

]
,

(20)
respectively, where h = − 1

2m2l1s2, s2 = sin(q2). The dynamic model parameters
of the robot are the following: m1 = 0.44[kg] and m2 = 0.35[kg] are masses,
l1 = 0.33[m] and l2 = 0.225[m] are link lengths, I1 = 0.004[kgm2] and I2 =
0.0015[kgm2] are link inertias, for both degrees of freedom.

Regarding the feedback linearization approach, all roots of the Hurwitz poly-
nomials vq,1, vq,2, vS,1, and vS,2 have been chosen equal to −1, while the gains
of the decoupling adaptive controller are set to Λ = 1, Kd = 1, and Kπ = 20. As
already discussed in [7], position and stiffness reference trajectories need to be
differentiable up to the third and first order, respectively, so that their asymp-
totic tracking can be achieved. The simulations have been designed in a way that
robustness of methods is verified with respect to dynamic parameter uncertainty,
when both position and stiffness of the soft robot’s joints are varying. The uncer-
tainty of parameters is set to 1% since the apparent difference between those two
approaches can already be noticed.
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Fig. 2. Positions and stiffnesses of joints for feedback linearization approach with pre-
cise (a) and 1% imprecise (b) dynamic parameters, and adaptive approach with precise
(c) and 1% imprecise (d) parameters
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As shown in Fig. 2 (a) and (c), feedback linearization and decoupling adaptive
control have a similar performance when parameters are precisely known, achiev-
ing satisfactory tracking of both position and stiffness. It can also be observed
that when the feedback linearization approach is used, stiffness does not get
affected at all by the variations of position, while small transient effects occur
for the case of the adaptive approach. The source for these transients may lay
in the calculation of actuator matrix pseudoinverse.

However, when the values of dynamic model parameters are reduced by 1%
compared to their real value, the difference in performance achieved by the two
methods becomes quite noticeable. In accordance with the previous results in
the literature, the position is tracked with a constant error when the feedback
linearization approach is used Fig. 2 (b). On the other hand, the adaptive control
scheme manages to cope with the uncertainty of parameters, once those dynamic
parameters are learned, and achieves good performance in tracking desired posi-
tion and stiffness references, Fig. 2 (d). The tracking of stiffness is not affected
by the uncertainty of dynamic parameters, as there is no mutual dependency.
Indeed, the robustness of the feedback linearization approach can be improved
by raising the gain values as shown in [15], but high gains affect the natural com-
pliance of a soft robot and make practical implementation challenging. Finally,
it is also worth remarking that the detailed comparison between the open-loop
and the closed-loop nonlinear adaptive control of flexible robot joint’s stiffness
and position can be found in [12].

5 Conclusion

Feedback linearization and decoupled nonlinear adaptive control are control tech-
niques that allow simultaneous, decoupled, and closed-loop control of both flexi-
ble robot joint’s position and stiffness. The paper shows that the main difference
between those two approaches lays in the fact that feedback linearization requires
accurate knowledge of dynamic model’s parameters, while the nonlinear adaptive
control achieves good performance even with the imprecise information about
the parameters’ values. Consequently, while both the practical implementation
and good tracking performance of the decoupled nonlinear adaptive control can
be easily achieved [12], the same is hardly possible for the feedback linearization
techniques, due to the very high gains necessary for satisfying the performance
requirements [15]. On the other side, decoupled nonlinear adaptive control can
so far only be used with pneumatically driven variable stiffness actuators.
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13. Fagiolini, A., Trumić, M., Jovanović, K.: An input observer-based stiffness estima-
tion approach for flexible robot joints. IEEE Robot. Autom. Lett. 5(2), 1843–1850
(2020)

14. Ménard, T., Grioli, G., Bicchi, A.: A stiffness estimator for agonistic-antagonistic
variable-stiffness-actuator devices. IEEE Trans. Robot. 30(5), 1269–1278 (2014)

15. Potkonjak, V., Svetozarevic, B., Jovanovic, K., Holland, O.: The puller-follower
control of compliant and noncompliant antagonistic tendon drives in robotic sys-
tems. Int. J. Adv. Robot. Syst. 8(5), 69 (2011)

https://doi.org/10.1177/0278364920903787
https://doi.org/10.1177/0278364920903787

